Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Buildings ; 12(3):321, 2022.
Article in English | ProQuest Central | ID: covidwho-1760393

ABSTRACT

The building sector continues to play an essential role in reducing worldwide energy consumption. The reduced consumption is accompanied by stricter regulation for the thermotechnical design of the building envelope. The redefined nearly Zero Energy Building levels that will come into force for each member state will pressure designers to rethink the constructive details so that mandatory levels can be reached, without increasing the construction costs over an optimum level but at the same time reducing greenhouse gas emissions. The paper aims to illustrate the main conclusions obtained in assessing the thermo-energy performance of a steel-framed building representing a holistically designed modular laboratory located in a moderate continental temperate climate, characteristic of the south-eastern part of the Pannonian Depression with some sub-Mediterranean influences. An extensive numerical simulation of the main junctions was performed. The thermal performance was established in terms of the main parameters, the adjusted thermal resistances and global thermal insulation coefficient. Further on, the energy consumption for heating was established, and the associated energy rating was in compliance with the Romanian regulations. A parametric study was done to illustrate the energy performance of the investigated case in the five representative climatic zones from Romania. An important conclusion of the research indicates that an emphasis must be placed on the thermotechnical design of Light Steel Framed solutions against increased thermal bridge areas caused by the steel’s high thermal conductivity for all building components to reach nZEB levels. Nevertheless, the results indicate an exemplary behaviour compared to classical solutions, but at the same time, the need for an iterative redesign so that all thermo-energy performance indicators are achieved.

2.
Buildings ; 12(1):34, 2022.
Article in English | ProQuest Central | ID: covidwho-1634689

ABSTRACT

The construction and building sectors are currently responsible globally for a significant share of the total energy consumption and energy-related carbon dioxide emissions. The use of Modern Methods of Construction can help reduce this, one example being the use of cold-formed steel (CFS) construction. CFS channel sections have inherent advantages, such as their high strength-to-weight ratio and excellent potential for recycling and reusing. CFS members can be rolled into different cross-sectional shapes and optimizing these shapes can further improve their load-bearing capacities, resulting in a more economical and efficient building solution. Conversely, the high thermal conductivity of steel can lead to thermal bridges, which can significantly reduce the building’s thermal performance and energy efficiency. Hence, it is also essential to consider the thermal energy performance of the CFS structures. This paper reviews the existing studies on the structural optimization of CFS sections and the thermal performance of such CFS structures. In total, over 160 articles were critically reviewed. The methodologies used in the existing literature for optimizing CFS members for both structural and thermal performances have been summarized and presented systematically. Research gaps from the existing body of knowledge have been identified, providing guidelines for future research.

SELECTION OF CITATIONS
SEARCH DETAIL